

Page # 1

Rad-Hard Temperature Stable Positive Voltage Regulators/References

Adjustable and Fixed Temperature Stable Regulators and References Manufactured in a Certified Class-K Facility

Features

- Rad-Hard to 300 krad TID (note 1)
- Single Event Latch-up (SEL) immune (LET>87 MeV/mg/cm²)
- Wide Input/Output Voltage Differential: 40V
- K-level screening
- Excellent Temperature Stability
- Enable/Disable Function

The APPREG2 Series are space qualified, wide-input range positive linear voltage regulators designed for military and space flight applications. Packaged in a hermetic TO-257 package, the regulators provide up to 1.5A of output current over their full input voltage range as per specification (see table 1). The device also features internal thermal shutdown and output current-limiting circuitry. This series is an excellent choice for applications requiring high radiation tolerance, low noise and high power supply rejection ratios.

These voltage regulators are provided in both adjustable and fixed output voltage configurations. The adjustable version requires only one external resistor to program the output.

Absolute Maximum Ratings

(Exceeding maximum ratings may damage the device.

Symbol	Parameter	Value	Unit
Vin- Vo	DC input- Output Differential	40	V
lo	Output Current	1.5	А
Pd	Power Dissipation Tcase=25°C	50	W
Rthjc	Thermal Resistance, Junction to Case	2.5	°C/W
Tstg	Storage Temperature	-65 to +150	°C
Тор	Operating Temperature Range	-55 to +125	°C
Tj	Maximum Junction Temperature	175	°C
W	Package weight	5	G
Tsold	Maximum Soldering Temperature, 10sec	265	°C
V _D	Disable Voltage	40	V

Radiation Ratings

Symbol	Parameter	Value	Unit
TID	Minimum in Spec Total Dose Performance (Dose Rate: 50-300 rad(Si)/s)	> 300	krads (Si)
ELDRS	Minimum in Spec Low Dose Rate Performance (Dose Rate \leq 10 mRad (Si)/s)	> 50	krads (Si)
SET	Linear Energy Threshold, Single Event Transients < 100mV, (note 5)	> 15	MeV/mg/cm ²
SEL/SEB	Single-Event Latch-up Free linear Energy Transfer Threshold	> 87	MeV/mg/cm ²

Rev Date: 6/12/2015

Page # 2

Electrical Characteristics (@ Ta= -55°C to +125°C Unless Otherwise Specified)

Pre-Radiation-

Symbol	Parameter	Test Conditions	Min	Typical	Max	Units
V _{REF}	Reference Voltage Accuracy (7)	Vdiff = 3.25 to 35 V, I_L =10mA		(9)		v
V _{LINE}	Line Regulation ^{(2) (7)}	Vout= Vref, I_L =10mA, 3.0V \leq Vdiff \leq 40V			+/-0.02	%/V
V _{load}	Load Regulation ^{(2) (8)}	Vdiff= 6.75V, $10mA \le I_L \le 1.25 A$			+/-1.5	%
I _{ADJ}	Adjust-Pin Current V _{load} ⁽⁷⁾	Vdiff= 3.0V – 39V, ILoad= 10mA			100	μA
ΔI_{ADJ}	Adjust-Pin Current Change ⁽⁸⁾	Vdiff= 3.0V – 40V, I _L =10mA, 25°C	-5		5	μΑ
ΔI_{ADJ}	Adjust-Pin Current Change ⁽⁸⁾	$Vdiff= 3.0V - 40V, I_L=10mA$	-6		6	μΑ
I _{OUT}	Output Current ⁽⁷⁾		1.25			А
V _{in} (Min)	Minimum I/O Differential ^{(4) (8)}	$Io \le 1.25 A$	4.5			V
Vo	Enable Voltage	V _{IN} = 30 V	> 1.5		< 2.5	v

Post-Radiation (Ta= 25 °C) Notes (1) (3)

Symbol	Parameter	Test Conditions	Min	Typical	Max	Units
V _{REF}	Reference Voltage Change	$Vdiff = 40V, I_L = 10mA$			+/- 50	mV
I _{ADJ}	Adjust-Pin Current Change	Vdiff= 3-35V, ILoad= 10mA			+/- 5	μA

Notes:

1. At the time of publication of this datasheet, API Technologies/Marlborough did not have a DLA certified radiation hardness assurance program.

- 2. Load & Line regulation are measured at constant (Tj) junction temperature using a low duty cycle pulse. Changes in output voltage due to heating effects must be evaluated separately.
- 3. TID radiation testing is performed per MIL-STD-883, method 1019.
- 4. Internal SOA protection limits output current with high input voltage.
- 5. Minimum exposure where parameters are guaranteed to stay within spec.
- 6. $V_{in} \ge 9V$ and $C_{OUT} \ge 44 \text{ uF}$
- 7. V_{DIFF} ≤ 39V @ 125°C
- 8. At 125°C, a 1.5A output requires an I/O differential of ≥ 6.75 V.
- 9. Please see Table 1 for values and limits of the various versions.

Screening Options

		Mil-Std-883-		
Tests	EM	Н	К	Method
	Engineering Models	Compliant- I		
100 % Non-Destruct Wire-Pull	N/A	Sample	100%	2023
Pre-Cap Visual	N/A	N/A	100%	2017
Temperature Cycle	N/A	100%	100%	1010
Constant Acceleration	N/A	100%	100%	2001
PIND	N/A	N/A	100%	2020
Pre-Burn-In Electrical (Ta= 25C)	N/A	100%	100%	
Burn-In	N/A	100% (240 Hours)	100% (320 Hours)	1015
Final Electrical	100% (25C)	100%	100%	
Hermeticity (Fine & Gross Leak)	N/A	100%	100%	1014
X-Ray	N/A	N/A	100%	2012
External Visual	Sample	100%	100%	2009

Rev Date: 6/12/2015

Page # 3

Table 1 – Product Functionality

$(-55^{\circ}C = Ta \le 125^{\circ}C, V_{IN} - V_{O} = 5V, I_{O} = 0.5 \text{ A UOS})$

APPREG2 Series Model Options	Protection Resistor ⁽¹⁾	Vout	Fixed/ Variable Output	Remote Sense	Ref/output Voltages @ 25° C	Ref/output Tolerance @ 25° C ⁽²⁾	Output Change -55-125°C	Operating Input Voltage (Vin-Vout must be 5 V or higher)													
-RSNO	No	4 25 44 27	Veriekle	Voc	Ref = 1.25 V	· (12 ····) (³)		4.25 to 40.14													
-RSRE	Yes	1.25 to 37	vanable	Tes	(See figure 2 & 6)	+/- 12 1110		4.23 t0 40 V													
-TCAN	No	7.5 to 37 V						Ref = 7 45 V	_	+/- 35 mV @ V _o = 7.5 V											
-TCAR	Yes		Variable	Yes	(See figure 3 & 6)	+/- 330 mV	+/- 50 mV @ V _o = 37 V	11 to 40 V													
-TC7N	No	7.5 V	751	7 5 1/	7 5 1/	7 5 1/	7 5 1/	751/	751/	7 5 1/	7 5 1/	751/	7 5 1/	7 5 1/	75.1	Fixed	Voc	Output = 7.50 V	$(10 m)^{(2)}$	1/25 mV @V = 7 5 V	11 to 40 V
-TC7R	Yes		Fixed	res	(See figure 4, 5, 6)	+/- 10 1110	+/- 35 mV @ V ₀ = 7.5 V	11 to 40 v													
-TC10N	No		10.01/	10.01/	Fixed	Voc	Output = 10.0 V	$(10 m)^{(2)}$	1/ 40 mV @V = 10 V	12 to 40 V											
-TC10R	Yes	10.0 V	Fixed	res	(See figure 4, 5, 6)	+/- 10 mv**	+/- 40 mv @ v ₀ = 10 v	13 to 40 V													
-TC15N	No	15.0 V	15.0.1	Eixod	Voc	Output = 15.0 V	(<u>1</u> <u>2</u>)														
-TC15R	Yes		Fixeu	res	(See figure 4, 5, 6)	+/- 10 mv , ,	+/- 50 mV @ V ₀ = 15 V	18 to 40 V													

Notes:

- 1. Protection resistor is 10 Ohms and is internally connected between the Output pin and the Sense pin to prevent a high Output Voltage excursion should the external remote sense connection be severed.
- 2. For fixed output versions, output tolerance is adjustable to zero with one external resistor.
- 3. Both Output Accuracy and Temperature Drift are specified as ± 25 mV Max. However, the sum of the two will not exceed +/- 25 mV (Applies to the non-TC versions only).

Ordering Information

Model # APPREG2-TC15R6K

APPREG2 Series

Figure 1 – APPREG Package Outline Drawing*

Pin No	Pin Name	Pin Description		
1	СОМР	Compensation		
2	V _{OUT}	Output Voltage		
3	ENABLE	Enable		
4	V _{IN}	Input Voltage		
5	SENSE	Remote Sense		
6	TRIM	Output Voltage Trim		
	COMMON	I/O Common **		

* Consult Factory for additional lead bend options.

** Case is return for enable signal.

Case is also common I/O for fixed output series.

Figure 3 – Interconnections for APPREG2-TC-Adj (Temperature Compensated Adjustable Output) Series

Rev Date: 6/12/2015

APPREG2 Series

Figure 4 – Interconnections for APPREG2-TC (Temperature Compensated) Fixed Output Voltage Series

Figure 5 – Interconnections for APPREG2-TC (Temperature Compensated) Fixed Output Voltage Series (with Output Trim Method)

